
迁飞昆虫磁定向研究方法
Methods for magnetic orientation research in migratory insects
任一渤1** 吕长宁1 隋金东1 李 品1 康慧铭2 潘卫东2 胡 高1 陈法军1 万贵钧1***
点击:19次 下载:2次
DOI:10.7679/j.issn.2095-1353.2025.138
作者单位:1. 南京农业大学植物保护学院,农林生物安全全国重点实验室(南京),南京 210095; 2. 中国科学院电工研究所,生物电磁学北京市重点实验室,北京 100190
中文关键词:迁飞昆虫;磁定向;研究方法;磁倾角罗盘;磁极性罗盘;磁感应机制
英文关键词:migratory insects; magnetic orientation; research methods; magnetic inclination compass; magnetic polarity compass; magnetoreception mechanisms
中文摘要:
昆虫的迁飞行为是自然界中最复杂且令人惊叹的生物学现象之一,迁飞昆虫可利用多种外部线索进行远距离定向(导航)。地磁场作为一种全球覆盖、昼夜连续、长期稳定的外部线索,被证明在包括昆虫在内的多种动物定向(导航)中发挥重要作用。近年来,围绕昆虫磁定向行为的研究不断取得进展,然而尚缺乏对研究方法的系统梳理。本文梳理了迁飞昆虫磁感应研究的主要方法,重点探讨了基于不同磁感应机制的磁倾角罗盘与磁极性罗盘行为学研究方法,涉及地磁定向研究的一般设置、地磁定向的行为学实验、地磁定向的生物物理学实验和地磁定向研究的潜在干扰因素及解决方案。文中进一步介绍了用于佐证自由基对与磁颗粒机制的关键实验技术,并针对磁定向行为易受电磁噪音、光污染和样本状态等因素干扰的特点,提出了系列控制策略。本文梳理总结了一个系统、可操作的迁飞昆虫磁定向研究方法框架,旨在推动迁飞昆虫磁定向研究的广度与深度:理论上,将促进动物磁感应机制的精细化揭示;实践上,将服务于农业害虫的迁飞监测与精准防控。
英文摘要:
Insect migration is one of the most complex and fascinating
biological phenomena in nature. Migratory insects rely on multiple
environmental cues to navigate across long distances with remarkable precision.
Among these cues, the Earth's geomagnetic field, being globally available,
diurnally continuous, and temporally stable, has been shown to play a critical
role in orientation and navigation in various animals, including insects.
Although recent years have seen rapid progress in understanding magnetic orientation
behavior in insects, a comprehensive methodological framework remains lacking.
This work synthesizes the principal methodologies for studying magnetoreception
in migratory insects, with a focus on behavioral approaches to inclination and
polarity compasses based on different magnetoreception mechanisms. It covers
the general experimental setups for geomagnetic orientation, behavioral assays,
biophysical investigations, and potential confounding factors in geomagnetic
research together with possible methodological solutions. We further introduce
key techniques used to investigate radical-pair and magnetite-based mechanisms,
and discuss methodological controls against experimental artifacts such as
electromagnetic noise, light pollution, and physiological variability. Building
on these advances, we synthesize current approaches into a systematic and
operational framework for studying magnetic orientation in migratory insects,
which will expand both
the breadth and depth of research in this field. Mechanistically, this
framework will advance the fine-scale understanding of animal magnetoreception; practically, it will support
migratory pest monitoring and precision control in agriculture.